
*1"

h MEMORANDUM

, RM-3054-PR
JAt• J962

__• SIMILARITY SOLUTION FOR CYLINDRICAL
S~MAGNETOHYDRODYNAMIC BLAST WAVES

Carl Greifinger and Julian D. Cole

Reproduced From
Best Available Copy

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

S AM IA#A ON 1(7A (A Il~l I 10641-A

MTRAB WAVES



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



MEMORANDUM

RM-3054-PR- -

JULY 1962

SIMILARITY SOLUTION FOR CYLINDRICAL
MAGNETOHYDRODYNAMIC BLAST WAVES

Carl Greifinger and Julian D. Cole

Thik resenrchi k -%on.ored by the I nitedI Stalte- Air Force ,-,vder Proje't HAND - (.on.
Irn't No, AF 4I0(6381.700- monitored( by, the l)irectorntc of l)evrlopmrnt Planning,
DleplyU. (:hief of Staff, IResearch and Technol•gy, lh1 IUSAF. View% or conurlu-ion. con.
tained in thik Memorandum -thould not lie interpretedl an r, repnting the olflrial opinion
or policy of the United State-i Air Force. i'ermiq*ion to quole from or reproduce portion.s
(f this MIremornndum muit he obtained from The HANI) Corporation.

'le t • e-90-94lo, .lt , -



-iii-

PREFACE

This work is primarily concerned with the interaction between

the flow of an ionized gas and a magnetic field. The particular

problem treated corresponds very closely to conditions existing in

exploding wire experiments, and should prove useful in interpreting

the results of such expariments.
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SUMMARY

A similarity solution is obtained for the flow behind a very

strong (in the hydrodynamic sense) cylindrical magnetohydrodynamic shock

wave produced by the sudden release of energy along a line of infinite

extent in a plasm.- - The plasma is assumed to be an ideal gas with in-

finite electrical conductivity, and to be permeated by the azimuthal

magnetic field of a line current. It is shown that it is of critical

importance to take into account the ambient magnetic pressure, no matter

how small. It is found that, to preserve similarity, the external circuit

is required to maintain a constant axial current; this result also appears

in the related problem, treated by Greenspan, where the ambient plasma

is nonconducting. It is shown that this boundary condition on the circuit

implies an exchange of energy at t = 0 between the external circuit and

the plasma. When this energy is taken into account, the dependence of the

shock speed on the explosive energy can be obtained. This dependence is

determinedas a function of the ambient magnetic field both for the present

case and for Greenspan's case, and intezcsting differences are noted. The

fraction of explosive energy which appears as mechanical energy is also

calculated for the two cases, and again significant differences are found

to exist. Other differences, with possible experimental consequences, are

also discussed. The distributions of flow quantities in the neighborhood

of the axis in the present case is found to be different from both the

ordinnry blast wave and Creenspan's case; the most pronounced differences

are in the dennity distribution for large mngnetic field and in the pressure

distribution for aPny mgnetic field whntever.
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I. IMMODUTICK

It is well known that a similarity solution exists for the flov

behind a very strong cylindrical shock wave produced by the sudden re-

lease of a finite amount of energy per unit length, along a straight

line of infinite extent in a uniform gas. (1) A corresponding magneto-

hydrodynamic problem also has the same similarity.(2v304) Here the

shocked gas is an electrically conducting plasma which interacts with an

applied magnetic field. The gas is assumed to be initially in a purely

azimuthal magnetie-field produced by a constant line current, the return

for which is a concentric cylindrical conductor of very large radius. The

flow is again produced by the sudden release of energy along the axis (by

exploding the wire carrying the current, for example).

The flows considered here are those for which the conductivity of

the shocked plasma is infinite. For this class of flows, as Greenspan(4)

has pointed out, two limiting cases arise. In the first case, the quiescent

gas has zero conductivity but the gas behind the shock has infinite con-

ductivity. The magnetic field across the shock is continuous and the

boundary conditions at the shock are the ordinary hydrodynamic Jump condi-

tions for a strong shock. This situation arises if the magnetic shock

transition zone is much wider than the viscous transition zone, which is

replaced by a shock jump. The entire effect of the magnetic field, in

this case, Is contained in its Interaction with the flow behind the shock.

This limiting case, hereinafter referred to as "modified hydrodynamic,"

has been discussed by Oreenspan. In the second limiting case, the magnetic

field is discontinuous across the shock, and the boundary conditions at

the shock are those appropriate to a inagnetohydrodynamic shock. This



-2-

situation results if both the magnetic and viscous transition zones are,

very thin and if the quiescent gas is also a perfect conductor (as a result

of pre-ionization, for example). In this case, hereinafter referred to as

"pure MHD," the magnetic field affects conditions at the shock itself as

well as those behind it.

In this paper, the pure MHD flow is considered in detail. This case

was first discussed by Pai, but the results obtained below are found to

disagree significantly with his. The discrepancy is shown to arise from

an approximation made by Psi to the pressure Jump condition at the shock.

The particular approximation was to neglect the magnetic pressure in front

of the shock. While it is true that, fur small values of this magnetic

pressure, the errors introduced at the shock are small, nevertheless the

inclusion of such a pressure, no matter how smill, produces a profound

effect at the axis and, concomitantly, in the energy content of the gas.

The question of the energy content of' the gas is also considered below,

for the modified hydrodynamic as well as for the pure MHD case. It is

shown that in both cases, in contrast to the ordinary blast wave solution,

the increment in the totnl (gas uyna;-,(c plus m tgnetic) energy of the gas

is not equal to the energy supplied by tne explosion. rhe two cases differ

markedly, however, in that in the vure MFD case the increment is infinite,

whereas in the modified hyirodynamic case It. is finite but lenas than the

energy supplied by the explosion. The difference between th~e increment

anu the explosion energy represents a concentration of magnetic energy,

in one case supplied by, ana in the other case removed by the externr.l

circuit in wintalninrn the constnnt current rpquirod by the similnrity

solutlon.ý -tA poxsible In both cases to cniculate the contribution frr-m



the external circuit, and thereby to relate the shock speed and the

mechanical energy in the gas to the energy supplied by the explosion.

The analysis reveals an interesting difference between the two cases.

In both cases only part of the energy supplied by the explosion appears

as mechanical energy, the remainder being converted to magnetic energy.

In the pure MHD case, this converted part of the explosion energy appears

in the compressed magnetic field behind the shock, while in the modified

hydrodynamic case, it is delivered instead to the external circuit.

It seems reasonable to believe that, despite the divergence mentioned

above, the results obtained have physical significance. The divergence

appears because of the unphysical assumption of a dimensionless axial con-

ductor. One would expect that in any actual experiment, where the axial

conductor has a finite radius, the true flow woula approach that given

oy the similarity solution nt aistances from the axis much greater than

the radius of the conductor. One woula also expect that any relations ob-

tained between finite quantities, such as the dependence of the shock speed

on the explosion energy or the ratio of mechanical energy to explosion energy,

wuula also be approximately valid. The-"• are questions which, of course,

must ultimately be decided experimentally.
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II. FORMULATION OF THE PROBLEM

A solution of the magnetohydrodynamic equations is desired for the

flow behind a cylindrical shock wave produced by the sudden release of a

finite amount of energy E per unit length, along an axis of infinite0

extent in a plasma. The plasma is assumed to be an ideal gas with infinite

electrical conductivity; viscosity and heat conduction are neglected. An

azimuthal magnetic field is assumed to exist initially in the plasma. As

a consequence of the assumption of infinite conductivity, the magnetic

field in the plasma remains azimuthal. Under the assumptions made, all

quantities are functions only of the radius r and time t, and the motion

of the gas is governed by the folloving equations:

r + rou) 0 (continuity) (la)
at br

(2 2
au ar • i• 2. + B B 0 (momentum) (lb)

rt+ r + ý r P ar 4 wr

B (uB9 ) . 0 (induction) (ic)

S +U ADI(ID- 0 o(entropy). (1d)

In these equations, 'p is the gas pressure, o in te density, u the rmdial

velocity# and B the azimuthal magnetic field. The specific heat ratio y

is assumed constant and the magnetic permeability g is taken to be that

of free spe (WS units are used throughout). The gas is assumed to be

Initially In a uniform state po0 0 *. The initial azimuthal magnetic field

is assumed to be that produced by a constant current Io, flowing along the

axis.
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Entering into the initial and boundary conditions of the problem are

certain dimensional constants; these are the initial pressure p0 . the

initial density p0, the initial axial current Io, and the energy E lib-

erated per unit length. Since the dimensions of the quantity gI are the

same as those of E0, only three of the four constants are dimensionally

independent. If, in addition, the liberated energy E0 is large enough to

produce a vey strong shock, the Initial pressure p0 may be neglected, and

only two constants with independent dimensions enter into the problem--o0

and E • As in the ordinary blast wave case, the only combination of length0

and time that can be formed from these constants is of the form

(length) 2  Z
time

It nov follows from general considerations that the system of equations,

(1),.possessiaisimilarity solution; this solution is of the form

0 - 0 (Pet)

u - o V (2b)

o a (1:) 2 6 ' (1) (2c)

where * D C and 8 are non-dimensional functions of a non-dimensional

variable. The only non-dimensional variable which can be formed from the

variables r and t and the dimensional constants of the problem is the

variable
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2S -- • (3)
c t

where c is some characteristic parameter with the dimensions of (length) /

time.

It is convenient to introduce as independent variables, instead of r

and t, the stream function d defined by

1-ur (4)

6r 0° t

and the variable 0 defined as

S- • .(5)
r

Physically, the value of 0 corresponding to any (r,t) is the ratio of the

mass between the axis and the radius r at time t tothe mass initially in

the same volume. The value of 0 at the shock, therefore, is 0s * 1. A

line of constant 0 is also a line of constnnt I in the (rt) plane.

In terms of the variables (*,0), rqs. (2) take the form

0 - % ,(0) (6a)

0

US - (6b)

11 2% ( 6c)

so " 1 c 0() (6d)

The quantity I1 defined by Eq. (t) is proportional to the squnre of
that defined by Greenspan.
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where the quantities a, U, P, and 1 are non-dimensional functions of the

single (non-dimensional) variable 0. The parameter c in Eq. (6) is

related to the speed of the shock; in general,

c-A C (7)
t12

where c is the shock speed and A is an arbitrary constant. In the present

case, it is convenient to choose A - 1.

It is necessary for the initial conditions to be compatible with the

assumed form,-(6),-of the solution. The plasma is assumed to be initially

at rest, to have a uniform dersity p0 , a uniform pressure Po, and to be

permeated by the azimuthal magnetic field of a constant line current I0O

The first two conditions are obviously expressible in the desired form;

viz.,

Uo -o (8a)

and

0 -' = l (8b)0

respectively, while the last condition c&;, be written in the form

(0 a 2oC.2 ) (8c)

For the condition of uniform pressure to be compatible with (6), however,

it is necessary to assume that the initial pressure is negligible; i.e.

Po o . (8d)

This is the usual blast wave assumption of a very strong shock.
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The Jacobian of the transformation defined by Eqs. (4) and (5) is

J U 801 - 2 auO • (9)

Since the2Jacobian is not zero (except at certain points), the transforma-

tion defines a one-to-one mapping between (r,t) and (tA). One may, in

fact, obtain an integral expression for the stream function t. The

differential equation

at 1 1 - (10)
F J ar "2 1-12 c*01/U

is easily integrated to yield

S. /2c*t ao . (10a)

Finally$ it is possible to express the variable I as a function

(implicit) of 0; by combining Eqs. (5), (5) and (10), one obtains

1.23/2 aU

If one now substitutes Eq. (6) into Eqs. (1) and transforms the

partial derivatives to derivatives with respect to O, the equations of

motion become

213/2U• d a 2 U 2(0-c) a d-l 0 (continuity) (12a)

6 2U U ( +1 2+ P O 0 (mom.'ntuin) (12b)
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d O O a d U =
2(Uo ul dU-T + (induction) (120)

- ) - o (entropy). (12d)

a

A solution of Eqs. (12) is aesirea which satisfies the boundary condi-

tions appropriate to a very strong magnetohydrodynamic shock. In terms of

physical variables, these conditions may be written:

p0  u
-- 1- _ (continuity) (13a)
PS c

p +-(B - B0 ) PuC (momentum) (15b)
6 2 4, s 0 0

B u
0 - . (induction) (13c)

(c 2 . 1 cus)(C-Us)2 =B_ (c2 _ y4' cu + Z u 2 ) (wave speed) (l5d)
2 PP0 2 s 2 s

where the subscript "s" denotes quantities immediately behind the shock

and B is the value of B@ immediately nhead of the shock. The quantity0

c is again the shock speed, given by (1.' with A = 1. The wave speed equa-

tion, (13d), is derived by combining the usual energy equation with the

continuity, momentum and induction equations.

It should be noted that the mnagnetic pressure ,thead of the shock has

teen retained in the momentum equation, (1.b). Although it is n'eessary

to neglect the ambient gas pressure in this equatin to preserve similarity,

the same is not true of the ambient magnetic pressure which does have 'the

proper form. This term, which was neglected by Pat, can therefore be

rpt,•tned ,nn, he will be shown below, should be rpt,,inoc.
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In terms of the non-dimensional variables defined by Eq. (6), the

shock relations become:

1

P + .P2 a2 1) (1b)
-a (1a)

P Po(s (14c) U

-- 2. - U5  (P~c)

(-1 7 u )(-u) =po (1 - 7 (14d)2 s s

The quantity P0 is given ty Eq. (8c), and is, physically, the ratio

of the Alfve'n speed in the gas immediately ahead of the shock to the

shock speed (Alfve'n number).

If Po is considered a parameter, Eqs. (1i) define a one-parameter

family of shock curves. For a given value of Poo Us is first determined

as a root of the quadratic equation, (14d). One then obtains aa and P5

directly from Eqs. (14a) and (14c), respectively, and then P from Eq.

(14b).

Three algebraic integrals of the four equations of motion may be

obtained. The entropy equation, (12d), has the immediate integral

S- a - (constant) (15)

from which it follows that the entropy is constant along a streamline. A

second integral may be obtained by combining Eqs. (12a) and (12c); namely

Ba 4 *b a (constant) (16)

a

'dhich expresses the fact that the field is "frozen" into the fluid--a
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well-known consequence of the assumption of infinite conductivity. A

final algebraic integral, obtained by combining Eqs. (12a) and (12b), is

7-1 2 2 )~ (p +.10) ak a(constant). (7

This so-called "energy integral" results from the fact that, with the

assumed similarity, the total energy is constant not only for the entire

flow field, but also between any two similarity lines.

To establish the connection between the variables used here and

those of Oreenspan, one additional relation may be derived; from Eqs. (11)
= 2/2. tte olw

and (l4a), the value of I at the shock is is M 2 It then follows

from Eq. (3) that the location of the shock is at rs(t) - 23/4(c*t)I/2.

The three integrals (15), (16) and (17) may now be used to eliminate

the functions Pp f and U from Eqs. (12). The system, (12), is thereby

reduced to the single first order equation

WY 1( - ....) [(7-2A_-y] - (1+g) [k + b(-)

so (18)

where

C (19)

If neither a nor b Is zero, no further analytic integration appears

possible. In the general cnae, then, the problem is reduced to the

numerical integrtion of a single ordinary equation.
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III. GEITERAL REMARKS

A few general remarks can be made in connection with Eq. (18).

Both cases mentioned in the Introduction, i.e., pure MHD, and modified

hydrodynamic, as well as the ordinary blast wave, appear as special cases

of Eq. (18). The solution, in each case, is that integral curve of Eq.

(18) which starts at the point appropriate to the particular shock and

terminates at the point which corresponds to the axis. (Each point on

the integral curve maps into a line of constant I in the (r,t)-plane.)

In every case, the point corresponding to the shock is a regular point of

the differential equation. Since only a single integral curve may pass

through a regular point, the solutions obtained in this manner are unique.

A point of central importance in the analysis is the dependence of

the solution on conditions at the shock. The boundary conditions at the

shock enter into Eq. (18) through the constants a, b, and k, which are

determined by evaluating the integrals (15), (16), and (17) at the shock.

Because of the non-linearity of Eq. (18), these constants affect the entire

flow behind the shock in a very complicated way. The most striking effect,

however, is on conditions at the axis. !n axis of symmetry always corre-

sponds to a singular point of such a differential equation, i.e., to a

point at which both the numerator and denominator vanish. The behavior of

physical quantities at the axis is very sensitive to the location of this

singular point, which, In turn, Is determined by the relationships among

the constants a, b, and k prescribed by conditions at the shock. As will be

seen below, this sensitivity to the location of the singular point manifests

itself in a profound difference at the axis, especlally in the pressure

diatribution, between the pure M and modified hydrodynamic caces.
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IV. ORDINARY BLAST WAVE SOLU'FTIOT"

For purposes of illustration and comparison, the ordinary blast

wave solurlon in the present variables is briefly sketched below. rhe

blast wave solution is recovered in the limit of zero magnetic field.

The appropriate shock conditions are Eqs. (lh) with 00 o. rhese,
2 Z'-l7,

applied to Eqs. (15) through (17), yield a = --L (7-1), b = k = 0; the

integrals (15) and (17) therefore become

2 (7-1)7 (70

and

1 U2 (21)
T 7-1

respectively, with 9 defined by Eq. (19).

rhe singular point of Eq. (18) corresponaing to the axis in this case

is the saddle point a = 0, Y = . The behavior of physical'qumntitiess 7-1

in the neighborhood of the axis can be ueduced from an analysis of Eq. (18)

in the neighborhooa of tae singular point. Hwever, in this case EF,. (18)

crn be integratea nmalyticrlly; the rol..ion .nt;iisf.ing the bounuary condi-

tions at the shock is

2 7+1 -
0.- (71 ( 7

2 -

Equations (20)-(26) giv. the complete solution, in pnr'imetric form,

of the equations of motion. 'he par'.meter g decrerises monotonicr•1.y from

the vilue nt the shock to the vlur. 7 Ft the rixir.
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It can be seen from these equations that P and U both become zero
(27-1)

at the axis, with P - a and U 2 . Since 0 a a '-a at the axis,

it follows from Eq. (10a) that c a t, and consequently from Eqs. (6)

for the physical-variables, that P - 0, u - 0, and pt - constant at the

axis. These are well-known properties of the blast wave solution.



V. PURE MHD CASE

In the pure MHD case, the boundary conditions at the shock are

given by Eqs. (14) with 0 < 0 < 1. (The density ratio across the shock

decreases with increasing P 0 becoming unity when Po U 1.) These shock

conditions, applied to Eqs. (16) and (17), yield

b = k 12 7~

"When these values of b and k are substituted into Eq. (18), it is found

that a higher order singular point a = 0, - 1 corresponds to the axis.

The par.meter C decreases monotonically from its value at the shock to

Its value at the axis.

An interesting conclusion can already be drawn from the location of

the singular point. It is easy to show, from the various defining relation-

ships and the integral (16) with b = 1 , that the magnetic field behind

the shock is given by

B (rt) . F (r,t) . (24)9 2ffr "

The factor multiplying the parameter C in Eq. (24) is clearly the initial

magnetic field. -Th!Xs, as might be expected, the magnetic field is every-

where compressed between the shock and the axis. At the axis, however,

the magnetic field maintains its initial value. This implies that, to

preserve similarity, the externnl circuit must maintain n constant current

Zoo (The same result was obtained by Oreenspan in the modified hydrodynamic

ease.) One might expect a priori that it flow with the same similnrity

would be produced if the current In the wire were instantaneously increased
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to a new constant value II, since such a boundary condition introduces

no new dimensional constants and is expressible in a form compatible with

the simil~rity. This, however, is apparently not the case; only the

maintenance of a constant current preserves similarity.

Because of the high order singularity of Eq. (18) at a = 0, • = i, the de-

pendence of the other variables on g in the neighborhood of the axis is

most easily-determined from the continuity equation, (12n). An t.nalysis

of this equations shows that, in the neighborhood of a 0, - . 1,

U aU0 exp[()( ] (25)

where U is a constant. It then follows from equations (17), (10), and

(11) that
2

71 - i)31) (6a)

- - if -1
o t 1) - exp 7 -- 1 rt-- T] (26c)

1

where a, [(71 )E , and f rnd n 0are constants. The last 01o these

equations verifies thnt this singular point indeed corresponds to the

axis (I a 0).

The behavior of the physical variables In the neighborhood of the

nxis can now be deduced from the defining equations, (6), and the Inte-

grnis (15) and (16). Mhe resultsi are:
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12

-2
S-i [. In(27a)

B2 1/2Po 1-i

~() 1 2 F.. n ni (27b)

%C Sb 0 c 8b n_ n -j 2 (270)

B2 Tp cB, " b '2b 9 (27d)

As in the ordinary blast wave solution, the density and velocity,

approach zero at the axis. The dependence on 1, however, is quite diff-

erent in the two cases, the logarithmic dependence being peculiar to the

pure MHD case. The density, in particular, approaches zero much more

slowly in the pure MHD case, especially for the larger values of Po (Fig.

.1). The pressure is markedly different, becoming infinite at the axis

rather than asymptotically constant an in the blast wave solution (Fig. 3).

This infinity will be discussea further in connection with the energy

content of the gas.

The results of the numerical integration of Eq. (18) for various

values of P2, with 7 a 1.4, are shown in Figs. 1-4. It is clear that the

presence of a magnetic field ahead of the shock has an important effect on

conditions at-he shock (nnd everywhere Lehinj it) an well as thone at the

axis. The compression across the shock decreases from its strong-shock value

of 1 for zero magnetic field (no U 0) to R value of unity for no 1 1. The

velocity and gas pressure at the shock vary accordingly, decreasing from

their strong-shock values to zero over the range of 1 . (The similarlty'0
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solution is valid, of course, only so long as the shock remains a strong

shock in the hydrodynamic sense, that is, so long as the gas pressure ahead

of the shock is negligible compared to that behind it.) The magnetic

pressure at the shock, on the other hand, exhibits a maximum at a value of
2
2 between 0.3 and 0.4. The appearance of such a maximum was noted in the

inverse pinch effect.5) The existence of this maximum depends only on the

jump conditions at the shock, which are the same as in the inverse pinch.

The importance of including the ambient magnetic pressure in the

shock relations is illustrated by comparison of the above results with

those of Pat,-where- this term was neglected. In the first place, if the

ambient magnetic pressure is neglected in Eq. (14b), the Alfvtn number,

Po is allowed to become arbitrarily large. This is in contradiction to

the limits 0 - Po < 1 obtained above for a pure MHD shock. In the second

place, all hydrodynamic quantities at the shock become independent of POP

always attaining their strong-shock values. It can be seen from Figs. 1-3

that this is a reasonable approximation only for very small values of Poo

The same error is introduced into the magnetic field ratio across the

shock which,ithPails conditions, is always + but which, with Eqs. (14),

decreases from this value to unity at 00 a 1. Finally, and what is

responsible for an important discrepancy even for the smallest values of

Pails conditions lead to different values for the constants a, b,

and k of Eqs. (15)-(17), and thereby alter the location of the singular

point of Eq. (18) which corresponds to the axis. With Pails conditions,

the singular point Is located at a - O, .- rather than at a a O,

I 1 (which is no longer even a singular point of the differential

equation). Along tho Integral curve passing through the shock, the
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variable t decreases from its value of + at the shock to some minimum

value, and then increases back to this value at the axis. Since the mag-

netic field behind the shock is given by Eq. (24), the location of the

singular point implies that the current in the wire has Jumped to 7+1
7-1

times-its ininfiiivalue, a solution in contradiction to the requirement

of a constant current when the ambient magnetic pressure is retained. The

difference in location of the singular point also leads to discrepancies

in the behavior of the other physical variables near the axis. In Pail's

solution, the density and velocity go to zero at the axis, but with a

dependence on I which is quite different from that given by Eqs. (27a) and

(27b). Tho most dramatic difference, however, is in the pressure which,

rather than becoming infinite, as given by Eq. (27c), goes to zero at the

axis% The solution in the neighborhood of the axis thus shows a sensi-

tivity to the shock conditions which is more than a little surprising.
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V1. MODIFIED HYDRODYNAMIC CASE

The modified hydrodynamic case has been considered in detail by

Greenspan, who obtained the colution by the numerical integration of

three coupled differential equations combined with one integral of the

motion. The solution can also be obtained within the framework of the

present formalism. Some properties of the solution of interest for com-

parison with the pure MHD case and for the energy considerations to follow,

are briefly noted at this point. In this case, the magnetic field is

assumed to be continuous across the shock; the boundary conditions at the

shock are therefore simply the ordinary hydrodynamic strong-shock condi-

tions, and the effect of the magnetic field appears only in the flow behind

the shock. The range of the Alfvgn number, PO) is now indeed unbounded,

in contrast with the pure MHD case.

When the strong shock conditions, together with the continuity of the

magnetic field, are applied to Eqs. (16) and (17), one obtains

1 2 z• 2
b a (7-1) (28a)2o 77+l

k -wL,-3)(•1 b (28b)

(cf., Eq. (23) for the pure MHD case). The singular point of Eq. (18)

which corresponds to the axis is the point a w O, Z * . Along the

integral c•rve through the shock, the parameter t decreases from its value

at the shock, s + , to some minimum value, and then increases back to7.1

i This war only a special case of the more genornl problem or rinite
conductivity, treated by Greenspan, where the entropy and frozen field
integrals do not exist.
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this value at the axis. In the modified hydrodynamic case, the magnetic

field behind the shock is given by

"41 gr, t)
B (rt) = - - - - (29)

(cf., Eq. (24)). Thus, the field is everywhere smaller between the shock

and the axis than it was initially; the field is expanded by the shock

rather than compressed by it as in the pure MHD case. At the axis, the

field again maintains its initial value, so that, as in the pure MHD case,

a requirement for similarity is that the external circuit maintain a con-

stant current.

This difference in the variation of the magnetic field implies a

marked difference between the two cases in the current distributions in

the shocked gas. In both cases, the field ahead of the shock is assumed

to remain unaltered; the integrated current through the gas must therefore

be zero in both cases. In the pure MHD case, where the field Jumps across

the shock, there is a cylindrical current sheet along the shock front,

flowing in the same direction as the axial current, and balanced by opposite

currents in the remainder of the gas. In the modified hydrodynamic case,

where the field is continuous across the shock, there is no current sheet.

Between the shock and the point where the variable C reaches its minimum

value, there are currents in the gas flowing in the same direction as the

axial current; these are balanced by the opposite currents in the remainder

of the Kas.

Although the singular point of Eq. (18) for Pal's solution is the
same as that for Oreenspan's asolution, a current Jump Is implied In the
former case, but a constant current in the latter. The reason for this
is that Mils Jump condition for the magnetic field leads to a value of
b given ty Eq. (25) rather than Eq. (28a), and hence to an expression for
D giwn by Eq.(24) rather than Eq. (29).



-22-

Another important difference between the two cases is in the behavior

of the other physical variables in the neighborhood of the axis. The

density and velocity again become zero at the axis, but not with the

logarithmic dependence on q of Eqs. (27a) and (2Tb). The pressure,

hovever, also goes to zero at the axis, In contrast to the pure MHD case

where it becomes infinite. The results for these two cases, as well as

for the ordinary blast wave, are sumarized in Table 1.
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Table 1

DEPENDENCE OF PHYSICAL VARIABLES ON NON-DI1MNSIONAL VARIABLE T

-I-TT1 NEIGHBORHOOD OF THE AXIS (j -0 )

". Cas're Modified Ordinary

Vari MHD Hydrodynamic Blast Wave

(-172 2 1

ut 1/2 1l/2 [. 11 -1 1l/2 T /

-2pt T1-1l.in 11 const.
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VII. ENERGY CON7E!%T

The one remaining parameter of the problem is the explosive energy

per unit length, E0 , released along the axis at t = 0. This parameter

enters through the fact that, with the assumed similarity, the total

energy between any two similarity lines, in particular between the shock

and the axis, is constant in time. In the ordinary blast wave solution,

the initial energy of the gas is assumed negligible and the gas is assumed

isolated from all external energy sources. The energy content (entirely

mechanical, in this case) of the gas in motion is therefore equal to the

energy released at t = 0. This equality allows one to obtain a relation

between the shock speed and the quantity E0.

When a magnetic field is present, the situation is not quite so

simple. One minor point is that, although the mechanical energy of the

gas is initially negligible, the magnetic energy is not (being infinite,

in fact) and must therefore be taken into account. Fecondly, while the

total mechanical energy of the gas in motion is still constant in time

(as is also the magnetic energy), this energy can no longer be identified

with the energy released at t = 0. Because of the coupling between gas

and magnetic field, some fraction (not known a priori) of the energy E°

appears as mechanical energy and some fraction as magnetic energy.

Finally, the system is no longer isolated from external sources; it is

coupled to an external circuit, which, moreover, is required to maintain

a constant current. It is conceivable that such a boundary condition on

the circuit implies an exchange of energy at t - 0 between external source

and :ystem. That this is in fact the case will be shown below.
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As noted above, the mechanical energy and the magnetic energy are

both constant between any two similarity lines. Another quantity, closely

related to the latter, is also constant between any two lines of constant

1, viz., the magnetic flux. Although the total magnetic flux between

shock and axis is constant in time subsequent to the explosion, it is not,

however, equal to the total magnetic flux in the same volume prior to the

explosion; there has been a change in flux (per unit length), M9, in

this volume given by

r(t)

0

Since the flux between shock and axis is constant in time, it follows that

an amount of flux, At, is supplied (or withdrawn) at the axis at the time

t-O, when shock and axis coincide. Associated with this flux is a quan-

tity of energy (per unit length), AEC - I 0*, which is supplied to (or

withdrawn from) the system at t a 0 by the source maintaining the constant

current I1. The increment in the total energy of the system thus contains

a part E c in addition to the part E released along the axis at t a 0.

The increment in the total energy of the system appears in two forms:

an increment, AEp, in the mechar.cal energy, given by
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6EG := 2v c~ *2 ( o31a)

0

and an increment, LEB, in the magnetic energy, given by

*2 1 [12 1 d

AEB •- 2 1- 0o (31b)

The energy balance equation for the system then becomes

E0 a &EG + AEB - AE • (32)

In Eq. (32), the quantity AEB - tEc represents that part of Eo which

appears as magnetic energy.

The energy equation can be written in the form

Eo 0  2o0Cc In(ro;i) (33)

where In( 0;7) is a constant which depends on the parameter P0 and the

specific heat ratio y, and which can be evaluated only after the complete

integration of the equations of motior... It is this equation which enables

one to obtain the dependence of the shock speed (which is related to c)

1tt
on the explosive energy Eo and the Alfven number Po"

ttIln his treatment of the modified hydrodynamic case, Greenspnn

calculated In(P 0 ;7) only in the limit po" a' where Eo - AEG .
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VIII. RESULTS AND CONCLUSIONS

The results of the numerical calculation of the energy parameters

are shown in Figs. 5 and 6. The dependence of the quantity In(S0 ;7)

on Po is shown, for two different values of y, in Fig. 5. In the modi-

fied hydrodynamic case, In(P 0 ;7) increases monotonically from the ordinary

blast wave value at 00 W 0 to the asymptotic value found by Greenspan

at Po * a. This implies, from Eqs. (33) and (7), that, for a given explo-

slive energy, the-shock speed decreases with increasing magnetic field. The

strength of the shock, however, remains constant in this case. In the

pure MHD case, In($0;y) increases from the blast wave value at -0 0 0

to a maximum at a a 0 of about 0.2, and then decreases to zero at 00 N 1.

For a given energy release in this case, then, the shock becomes weaker

with increasing magnetic field, but the shock speed first decreases to a

minimum value and then increases as the magnetic field is increased.

Fig. 6 shows the dependence on P0 of the fraction of Eo which appears

as mechanical energy. In the pure MHD case, this fraction decreases

monotonically from unity at po U 0 to l/: at po a I. In the weak shock

limit, then, there is equipartition of the explonive energy between mechan-

ical and magnetic energy. This is in contrast to the modified hydrodynamic

case where this fraction is essentially unity, independent of pop Actually,

this quantity decreases by about one half of one per cent at a value of

1o of about 0.5, but the decrease is too sr.tll to be shown in the figure.

The explosive energy, therefore, appears almost entirely as mechanical

enPrgy in the modified hydrodynamic case.

There are some other interesting differences in energy content In the

pu-oe CD and modified hydrodynamic cages which may te inferreu from Eqs.(50)
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and (31), taken together with Eqs. (24) and (29) and the discussion per-

taining thereto. In the pure MHD case, where the field is everywhere

compressed behind the shock, the quantities AEB and Ec - I° At are both

positive. Both quantities are, in fact, positively infinite; the appear-

ance of this divergence and its effect on the validity of the results has

been discussed in the Introduction. The difference, AB - AEcp is, however,

finite and positive; it represents the portion of E which is converted to

magnetic energy at t s 0. Since AEB > AE•, this part of E appears in
B C 0

the compressed magnetic field between shock and axis.

In the modified hydrodynamic case, where the field is everywhere ex-

panded behind the shock, both AEB and AEc are negative (although finite,

in this case). The difference, AE B - AEc, is, however, again positive,

arA again represents the portion of E0 which is converted to magnetic

energy at t a 0. However, since AEB < Ec, this part of E0 does not appear

now in the magnetic field behind the shock but is delivered instead to

the external circuit.

The difference just discussed implies a corresponding difference in

the voltage induced in the external 61rcuit by the gas in motion. In

the pure MHD came, AEc is positive; i.e., the external source supplies a

pulse of energy at t a O. Thus, a positive voltage pulse (i.e., in the

sas sense as I1) should be induced in the circuit at t a O. Subsequently#

as the shock progresses outvard through the gas, amb! .nt mngnetic Pnergy

enters the region behind the shock. Since the total magnetic energy (and

magnetic flux) betveen the shock and the axis remains constartin time,

magnetic energy must leave at the axis at the same rate it is entering at

the shock. Thus, the short positive voltage pulse should be followed by

a long negatlve voltage pulle.
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In the modified hydrodynamic case, the situation is Just reversed.

The quantity AEc is now negative, which means that a pulse of energy is

delivered to the circuit at t 0 0. This implies an initial. negative

voltage pulse. As the shock progresses outwards, it "pushes out" some

of the magnetic field from the gas through which it passes (the field is

expanded as a result of the passage of the shock). There is thus an out-

flow of magnetic energy through the shock which must be balanced by an

influx of energy at an equal rate at the axis. The short negative voltage

pulse should therefore be followed by a long positive voltage pulse.

The long voltage pulses discussed above should be observable experi-

mentally. However.-whether or not the short voltage pulses would also be

seen is an open question. As mentioned in the Introduction, one would

expect that, in any actual experiment, where the axial conductor has a

finite radius, the true flow would approach that given by the similarity

solution at distances from the axis much greater than the radius of the

conductor. The short voltage pulse at t = 0, however, is a property

of the solution which is associated with the axis itself, and one may

reasonably wonder whether this feature of .'-he solution would be retained

in an actual expefrment.

Finatly, the energy and flux considerations outlined above help to

account, at least heuristically, for the difference in the pressure distri-

bution at the axis in the two cases. One can think of an imaginary inter-

face at the axis across which there must be a pressure balance if the flow

It not to separate from the axis. In the pure MMD case, an infinite

magnetic pressure is produced on one side of this interface by the addition

of magnetic flux at t 0 0; this Is balanced by an infinite gas pressure
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at the axis. In the modified hydrodynamic case, a "partial magnetic

vacuum" is created at the axis by the removal of flux at t 0 0; pressure

balance in this case requires that the gas pressure be zero at the axis.
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